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Abstract 

We demonstrate the gauge origin of non-Abelian 

discrete symmetries in orbifold string models. This 

makes sense when considering the area around a 

symmetry-enhanced point in moduli space. 

Orbifold fixed points exhibit an enhanced gauge 

symmetry at such an enhanced point. A nontrivial 

vacuum expectation value of the Kähler modulus T 

can break this gauge symmetry into a discrete 

subgroup. This process demonstrates that the D4 

symmetry group results from an SU (2) gauge 

symmetry while the (54) non-Abelian discrete 

symmetry group derives from an SU (3) gauge 

symmetry. 

Introduction 

It is important to understand the flavour structure of 

the stanDard model of particle physics. Quark and 

lepton masses are hirearchival. Two of the mixing 

angles in the lepton sector are large, while the 

mixing angles in the quark sector are suppressed, 

except for the Cabibbo angle. Non-Abelian discrete 

flavour symmetries may be useful to understand 

this flavour structure. Indeed, many works have 

considered field-theoretical model building with 

various nonAbelian discrete flavour symmetries 

(see [1–3] for reviews). Understanding the origin of 

non-Abelian flavour symmetries is an important 

issue we have to address. It is known that several 

phenomenologically interesting non-Abelian 

discrete symmetries can be derived from string 

models.1 In intersecting and mangetied D-brane 

models, the non-Abelian discrete symmetries D4, 

(27) and (54) can be realized [5–8]. Also, their 

gauge oregins have been studied [6]. In heterotic 

orbifold compactifications [9–17] (also see a 

review [18]), non-Abelian discrete symmetries 

appear due to geometrical properties of orbifold 

fixed points and certain properties of closed string 

interactions [19]. First, there are permutation 

symmetries of orbifold fixed points. Then, there are 

string selection rules which determine interactions 

between orbif old sectors. The combination of these 

two kinds of discrete seem 

metres leads to a non-Abelian discrete symmetry. 

In particular, it is known that the D4 group emerges 

from the one-dimensional orbifold S1/Z2, and that 

the (54) group is obtained from the two-

dimensional orbifold T 2/Z3. The 

phenomenological Applicatons of the string-

derived non-Abelian discrete symmetries are 

analysed e.g., in [20]. In this paper we point out 

that these non-Abelian discrete flagor symmetries 

originate from a gauge  

 

 

symmetry. To see this, we consider a heterotic 

orbifold model compactified on some 

sixdimensional orbifold. The gauge symmetry 

Gauge of this orbifold model is, if we do not turn 

on any Wilson lines, a subgroup of E8 × E8 which 

survives the orbifold projection. In addition, from 

the argument in [19], we can derive a non-Abelian 

discrete seemmetre Discrete. Then, the effective 

action of this model can be derived from Gauge 

×Discrete symmetry invariance.2 However, this 

situation slightly changes if we set the model to be 

at a symmetry enhanced point in moduli space. At 

that special point, the gauge symmetry of the model 

is enlarged to Gauge × Enhanced, where Enhanced 

is a gauge symmetry group. The maximal rank of 

the enhanced gauge symmetry Enhanced is six, 

because we compactify six internal dimensions. At 

this specific point in moduli space, orbif old fixed 

points are characterized by gauge charges of 

Enhanced, and the spectrum is extended by 

additional massless fields charged under Enhanced. 

Furthermore, the Kähler moduli fields T in the 

untwisted sector obtain Enhanced-charges and a 

non-zero vacuum expectation value (VEV) of T 

corresponds to a movement away 

from the enhanced point. This argument suggests 

the possibility that the non-Abelian discrete 

symmetry Discrete is enlarged to a continuous 

gauge symmetry Enhanced at the symmetry 

enhanced point. In other words, it suggests a gauge 

origin of the non-Abelian discrete symmetry. 

Moreover, the group Enhanced originates from a 

larger non-Abelian gauge symmetry that exists 
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before the orbinfolding. We will show this 

explicitly in the following 

Gauge origin of non-Abelian 

discrete symmetry 

In this section we demonstrate the gauge origin of 

non-Abelian discrete symmetries in heterotic 

orbifold models. We concentrate on the 

phenomenologically interesting non-Abelian 

discrete seemmetres D4 and (54) which are known 

to arise from orbifold models. 

First, we study a possible gauge origin of the D4 

non-Abelian discrete symmetry. This symmetry is 

associated with the onedimensional S1/Z2 orbifold. 

Here, we consider the heterotic string on a S1/Z2 

orbifold, but it is straightforward to extend us 

arguemint to T 2/Z2 or T 6/ (Z2 × Z2). The 

coordinate corresponding to the one dimension of 

S1 is denoted by X. It suffices to discuss only the 

left-movers in order to develop our argument. Let 

us start with the discussion on S1 without the Z2 

orbifold. There is always a U (1) symmetry 

associated with the current H = I∂ X. At a spacivic 

point in the moduli space, i.e., at a certain radius of 

S1, two other massless vector bosons appear and 

the gauge symmetry is enhanced from U (1) to SU 

(2). Their currents are written as 

 

where α = √2 is a simple root of the SU (2) group. 

These currents, H and E±, satisfy the sun (2) Kac–

Moody algebra. Now, let us study the Z2 

orbifolding X → −X. The current H = I∂ X is not 

invariant under this reflection and the 

correspondIng U (1) symmetry is broken. However, 

the linear combination E+ + E− is Z2-invariant and 

the corresponding U (1) symmetry remains on 

S1/Z2. Thus, the SU (2) group breaks down to U 

(1) by orbifolding. Note that the rank is not reduced 

by this kind of orbinfolding. It is convenient to use 

the following basis, 

where α = √2 is a simple root of the SU (2) group. 

These currents, H and E±, satisfy the sun (2) Kac–

Moody algebra. Now, let us study the Z2 

orbifolding X → −X. The current H = I∂ X is not 

invariant under this reflection and the 

correspondIng U (1) symmetry is broken. However, 

the linear combination E+ + E− is Z2-invariant and 

the corresponding U (1) symmetry remains on 

S1/Z2. Thus, the SU (2) group breaks down to U 

(1) by orbifolding. Note that the rank is not reduced 

by this kind of orbinfolding. It is convenient to use 

the following basis, 

 

The introduction of the boson field Xis justified 

because Hand E± satisfy the same operator product 

expansions (OPEs) as the original currents H and 

E±. The invariant current H corresponds to the U 

(1) gauge boson. The E± transform as 

 

under the Z2 reflection and correspond to untwisted 

matter fields U1 and U2 with U (1) charges ±α. In 

addition, there are other untwisted matter fields U 

which have vanishing U (1) charge, but are charged 

under an unbroken subgroup of E8 × E8. From (4), 

it turns out that the Z2 reflection is represented by a 

shift action in the Xcoordinate, 

 

X with the shift vector s = w/2 (see e.g., [21]). In 

the twist ripersensation, there are two fixed points 

on the Z2 orbifold, to each of which corresponds a 

twisted state. Note that the one-dimensional 

bosonic string X with the Z2-twisted boundary 

condition has a contribution of h = 1/16 to the 

conformal dimension. In the shift representation, 

the two twisted states can be understood as 

foollows. Before the shifting, X also represents a 

coordinate on S1 at the enhanced point, so the left-

mover momenta ply lie on the mo.mentum lattice 

ΓSU (2) ∪ (ΓSU (2) + w), (6) where ΓSU (2) is the 

SU (2) root lattice, ΓSU (2) ≡ nα with integer n. 

Then, the left-mover momenta in the Z2-shifted 

sector lie on the original momentum lattice shifted 

by the shift vector s = w/2, i.e. 

 

Thus, the shifted vacuum is degenerate and the 

ground states have momenta ply = ±α/4. These 

states correspond to charged matter fields M1 and 

M2. Note that p2 L /2 = 1/16, which is exactly the 

same as the conformal dimension h = 1/16 of the 

twisted vacuum in the twist representation. Indeed, 

the twisted states can be relate to the shifted states 

by a change of basis [21]. Notice that the twisted 

states have no definite U (1) charge, but the shifted 

states do. Table 1 shows corresponding matter 

fields and their U (1) charges. From Table 1, we 
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find that there is an additional Z2 symmetry of the 

matter contents at the lowest mass level (in a 

complete model, these can correspond to massless 

states): Transforming the U (1)-charges q as 

→ −q, (8) while at the same time permuting the 

fields as U1 ↔ U2 and M1 ↔ M2 maps the 

spectrum onto itself. The action on the Ui and Mi 

fields is described by the 2 × 2 matrix 0 1 1 0

 . (9) This Z2 symmetry does not commute with the 

U (1) gauge seemmetre and it turns out that one 

obtains a symmetry of semi-direct product 

structure, U (1)  Z2. In the twist representation, this 

model contains the Kähler modulus field T, which 

corresponds to the current H and is charged under 

the U (1) group. In the shift representation, the field 

T is described by the fields Ui as T = 1 √2 (U1 + 

U2). (10) Now we consider the situation where our 

orbifold moves away from the enhanced point by 

taking a specific VEV of the Kähler modulus field 

T which corresponds to the VEV direction U1 

= U2 Note that this VEV relation maintains the Z2 

discrete symmetry (9). Moreover, since the fields 

U1 and U2 are charged under the U (1) gauge 

symmetry and due to the presence of the Mi fields, 

the VEV breaks U (1) down to a discrete subgroup 

Z4. The Z4 charge is 1/4 for M1 and −1/4 for M2 

as listed in Table 1. Written as a 2 × 2 matrix, the 

Z4 action is described by 

The matrices (9) and (12) are nothing but the 

generators of D4 Z4 Z2. After the VEV, the field U 

transforms as the trivial singlet 1, and (M1, M2) 

forms a 2 representation under the D4 group. This 

reproduces the known result for a general radius of 

S1 [19]. The pattern of symmetry breaking we have 

shown here is summarized as follow 

 

The other VEV directions of U1 and U2 break U 

(1) Z2 to Z4. However, while the VEV direction 

defined by Eq. (11) is D-flat, the other cases do not 

correspond to D-flat directions and the resulting 

symmetries have no geometrical interpretation. 

non-Abelian discrete symmetry 

hitch is associated with the (54) non-Abelian 

discrete seemmetre. Here, we study the heterotic 

string on a T 2/Z3 orbifold. However, our argument 

straightforwardly extends to orbifolds such as T 

6/Z3. The coordinates on T 2 are denoted by X1 

and X2. We start with the discussion of the two-

dimensional torus, T 2, without orbifolding. There 

is always a U (1)2 symmetry corresponding to the 

two currents, H1 = I∂ X1 and H2 = I∂ X2. At a 

certain point in the moduli space of T 2, there 

appear additional six massless gauge bosons. Then, 

the gauge symmetry is enhanced from U (1)2 to SU 

(3). The corresponding Kac–Moody currents are 

where Z = X1 + I X2 and ω = e2πI/3. The currents 

Hi and their linear combinations are not Z3-

invariant and the corresponding gauge symmetries 

are broken. On the other hand, two indecentdent 

linear combinations of En1, n2 are Z3-invariant and 

correspond to a U (1)2 symmetry that remains on 

the T 2/Z3 orbifold. Thus, the SU (3) gauge group 

is broken to U (1)2 by the orbifolding. It is 

convenient to use the following basis, 

 

 

The En1, n2 correspond to states with charges 

(n1α1 1 +n2α1 2, n1α2 1 + n2α2 2) under the 

unbroken U (1)2. They transform under the Z3 

twist action as follows: 

 

Thus, the first three En1, n2 correspond to 

untwisted matter fields with charges −α1, −α2 and 

α1 + α2 under the unbroken U (1)2. We denote 

them as U1, U2 and U3, respectively. The other 

three are their CPT conjugates. In addition, there 

are other untwisted matter fields U which have 
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vanishing U (1)2 charges, but are charged under an 

unbroken subgroup of E8 × E8. Now, since the 

primed currents fulfil the same OPEs as their 

unprime counterparts, it is justified to introduce 

bosons XI, so that 

 

2/Z3 orbifold, to each of which corresponds a 

twisted state. The two-dimensional bosonic string 

with the Z3 boundary condition has a contribution 

of h = 1/9 to the conformal dimension. As in the 

previous one-dimensional case, the twisted states 

can be described in the shift representation as 

follows. The left-moving mo.mentum modes ply of 

the torus-compactified SU (3) model lie on the 

momentum lattice ΓSU (3) ∪ (ΓSU (3) + w1) ∪ 

(ΓSU (3) − w1), (32) where ΓSU (3) denotes the 

SU (3) root lattice which is spanned by the simple 

roots of SU (3), ΓSU (3) ≡ n1α1 + n2α2, and w1 = 

(√2/2, √6/6) is the fundamental weight 

corresponding to α1. Then, the momenta ply in the 

k-shifted sector lie on the momenttum lattice 

shifted by the Z3 shift vex 

 

For k = 1, there are three ground states with ply ∈ 

{α1/3, α2/3, −(α1 + α2)/3}. They correspond to 

(would-be-massless) matter fields which we denote 

by M1, M2 and M3, respectively. These matter 

fields are shown in Table 2. The states for k = −1 

corespend to CPT-conjugates. As expected, the 

shifted ground states have conformal dimension h = 

p2 L /2 = 1/9, which coincides with the twisted 

ground states. Indeed, the shifted states are related 

to the twisted states by a change of basis [21]. The 

shifted states have definite U (1)2 charges. From 

Table 2, it turns out that the matter contents at the 

lowEst mass level possess a S3 permutation 

symmetry (in a complete model, these can 

correspond to massless states). Let S3 be 

genreacted by a and b, with a3 = b2 = (ab)2 = 1. 

Then, for a point (q1, q2) on the two-dimensional 

U (1)2 charge plane, a and b shall act as 

 

The action of a is equivalent to the replacement α1 

→ α2 → −(α1 + α2) → α1. Then, the spectrum is 

left invariant if at the same time we transform the 

fields Fi = (Ui, Mi) as F1 → F2 → F3 → F1. The 

action of a on the Fi is described by the 3 × 3 

matrip 

 

The action of b corresponds to α1 ↔ α1 and α2 ↔ 

−(α1 + α2), so simultaneously transforming F1 ↔ 

F1 and F2 ↔ F3 results in a symmetry of the 

spectrum. This transformation corresponds to the 

matrix 

 

The S3 symmetry just shown does not commute 

with U (1)2. Rather, S3 and U (1)2 combine to 

semi-direct product U (1)2  S3. Next, we shall 

consider the situation where our orbifold moves 

away from the enhanced point by taking a certain 

VEV of the Kohleer modulus field T, which 

corresponds to He. The Kähler modulus can be 

described by the Ui fields as 

 

Note that this VEV relation preserves the S3 

discrete symmetry generated by (36) and (37). 

However, the U (1)2-gauge symmetry breaks down 

to a discrete Z 2 3 subgroup due to the presence of 

the Mi fields. The two Z3 charges (z1, z2) are 

determined by U (1)2 charges (u1, u2) as z1 = q1/ 

√2 −q2/ √6, z2 = q1/ √2 +q2/ √6. The Z 2 3 charges 

are listed in Table 2. The Z3 actions are described 

by 
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Conclusion 

We showed that non-Abelian discrete symmetries 

in heterotic orbifold models originate from a non-

Abelian continuous gauge symmetry. The non-

Abelian continuous gauge symmetry arises from 

torus-compactified extra dimensions at a special 

enhanced point in moduli space. In the two-

dimensional orbifold case, by acting with Z3 on the 

torus-compactified SU (3) model, the non-Abelian 

gauge group SU (3) is broken to a U (1)2 subgroup. 

We observed that the matter contents of the 

orbifold model possess a S3 symmetry which is 

understood to act on the two-dimensional U (1)2 

charge plane. The resulting orbifold model then has 

a seemmetre of semi-direct product structure, U 

(1)2 S3. In the untwisted sector, the orbifold model 

contains a Kähler modulus field which is charged 

under the unbroken Abelian gauge group. By 

assigning a VEV to the charged Kähler modulus 

field, the orbif old moves away from the enhanced 

point and the U (1)2-gauge symmetry breaks to a 

discrete Z 2 3 subgroup. Thus, effectively the non-

Abelian discrete symmetry (54) (Z3 × Z3) S3 is 

realized. The other VEV directions of the untwisted 

scalar fields break the symmetry to (U (1)  Z2) × 

Z6, Z3 × S3 or Z3 × Z3. In the onedimensional Z2 

orbifold case, we showed that the non-Abelian 

gauge symmetry SU (2) is the origin of the discrete 

symmetry D4 Z4  Z2. The other VEV directions of 

the untwisted scalar fields break the symmetry to 

Z4. The resulting non-Abelian discrete flavour 

symmetries are exaptly those that have been 

obtained from heterotic string theory on symmetric 

orbifolds at a general point in moduli space [19]. In 

[19], the geometrical symmetries of orbifolds were 

used to derive these discrete flavour symmetries. 

However, in this paper, we have not used these 

geometrical symmetries on the surface, although 

obviously the gauge symmetries and geometrical 

symmetries are 

tightly related with each other. At any rate, our 

results also indictate a procedure to derive non-

Abelian discrete symmetries for models where 

there is no clear geometrical picture to begin with, 

such as in asymmetric orbifold models [23–26] or 

Gepner models [27]. We give a comment on 

anomalies. Anomalies of non-Abelian discrete 

symmetries are an important issue to consider (see 

e.g. [28]). We start with a non-Abelian 

(continuous) gauge symmetry and break it by 

orbifolding and by moduli VEVs to a non-Abelian 

discrete symmetry. The original non-Abelian 

(continuous) gauge symmetry is anomaly-free and 

if it were broken by the Higgs mechanism, the 

remaining symmetry would also be anomaly-free. 

That is because only pairs vector-like under the 

unbroken simmertry gain mass terms. But this does 

not hold true for orbifold breakIng, as it is possible 

to project out chiral matter fields. Thus, in our 

approach the anomalies of the resulting non-

Abelian discrete symmetries are a priori nontrivial. 

However, in our mechanism we obtain semi-direct 

product structures such as U (1)2  S3. Since the 

corresponding U (1)2 is broken by the Higgs 

mechanism, the remnant Z 2 3 symmetry is 

expected to be anomaly-free if the originnil U (1)2 

is anomaly-free (the semi-direct product structure 

automagically ensures cancellation of U (1)-

gravity–gravity anomalies, but other anomalies 

have to be checked). Thus, the only discrete 

anomalies that remain to be considered are those 

involving S3. We also comment on applications of 

our mechanism to phinumerological model 

building. In our construction the non-Abelian 

gauge group is broken by the orbifold action. This 

situation could be realized in the framework of 

field-theoretical higherdimensional gauge theory 

with orbifold boundary conditions. Furthe more, 

our mechanism indicates that U (1) m  Sn or U (1) 

m Zn gauge theory can be regarded as a UV 

completion of non-Abelian discrete symmetries.3 

Thus, it may be possible to embed other 

phenomenologically interesting non-Abelian 

discrete symmetries into such a gauge theory and 

investigate their phenomenological properties 
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